18th World Congress of the International Federation of Automatic Control

# Product driven manufacturing control with embedded decisional entities

#### Theodor Borangiu<sup>1</sup>, Silviu Raileanu<sup>1</sup>, Florin Anton<sup>1</sup>, Christian Tahon<sup>2</sup>, Thierry Berger<sup>2</sup>, Damien Trentesaux<sup>2</sup>

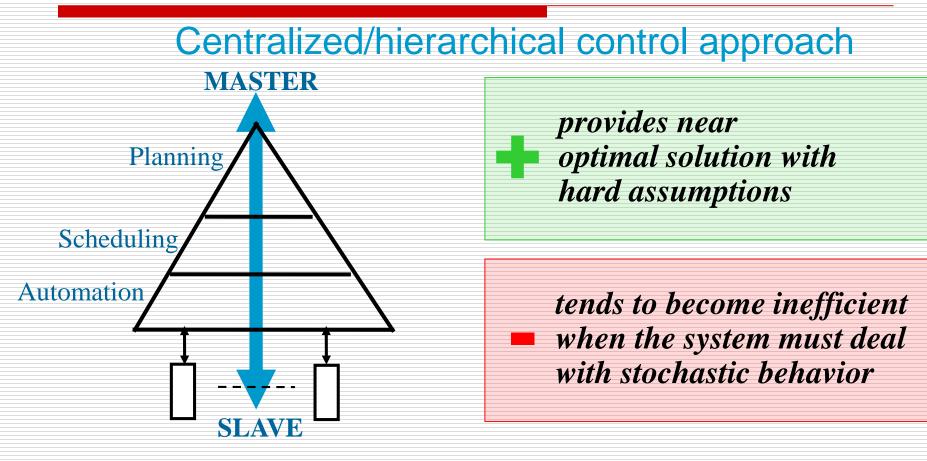
<sup>1</sup> University Politehnica of Bucharest, Dept. of Automation and Industrial Informatics, ROMANIA CIMR Centre of Research & Training in Robotics and CIM, cimr@cimr.pub.ro
<sup>2</sup> Université Lille Nord de France, F-59000 Lille, UVHC, TEMPO Lab. F-59313 Valenciennes, FRANCE





Milano, August 28 – September 2, 2011




## Summary

- 1. Introduction
  - State of the art in discrete, repetitive manufacturing control
  - From hierarchical to heterarchical control topologies
- 2. Structure of the control model
  - The physical infrastructure
  - Service-oriented control model with automatic reconfiguring
  - Structure of the generic building block
- 3. Dynamics of the control model
  - Using the Intelligent product for taking decisions in an industrial fabrication environment, switching between the different production strategies
  - Real-time decentralized resource allocation process
- 4. Implementation of the generic control model
  - Composing agents
  - RSAM distributed infrastructure and agent interconnection

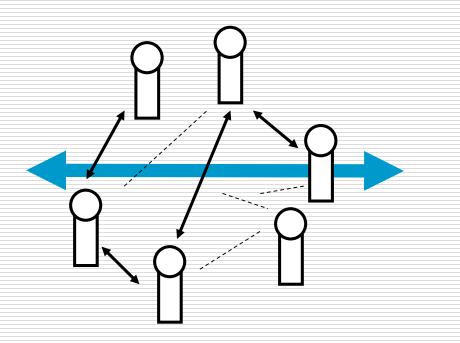




Introduction



**Computer Integrated Manufacturing** 




Thermique Ecoulement Mécanique Matériaux Mise en Forme PrOduction

EA 4542

## Introduction

# Decentralized/heterarchical control approach



agile, reactive & able to adapt to the environment changes

lack of long term optimality even when the environment remains deterministic

- Holonic systems (Van Brussel et al., 1998),
- Heterarchical systems (Trentesaux, 2007)
- Intelligent products (Meyer et al., 2008)





## Introduction

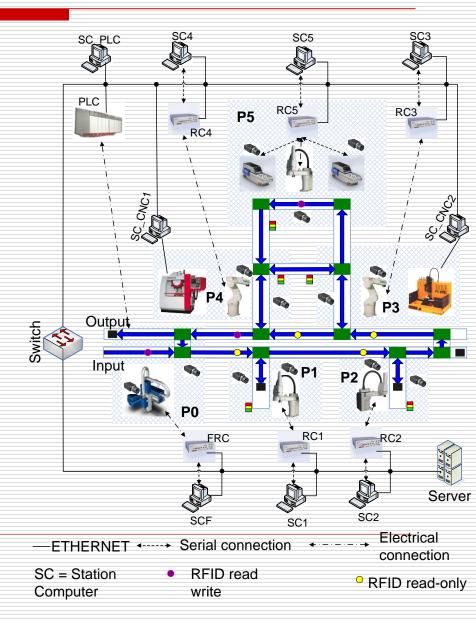
- Current demands in FMS control: best performance, predictable over time and agile
- Classic solutions: centralized vs decentralized control architectures
- Intelligent products (Meyer et al., 2008) in a service oriented control architecture
- Holonic control (autonomous and cooperative entities)
- Objective: propose an architecture agile and optimized on long term

## **Objectives:**

- Control system composed of autonomous and cooperative entities
- Fault tolerance
- Agile configuration of resources
- Long term / global optimization

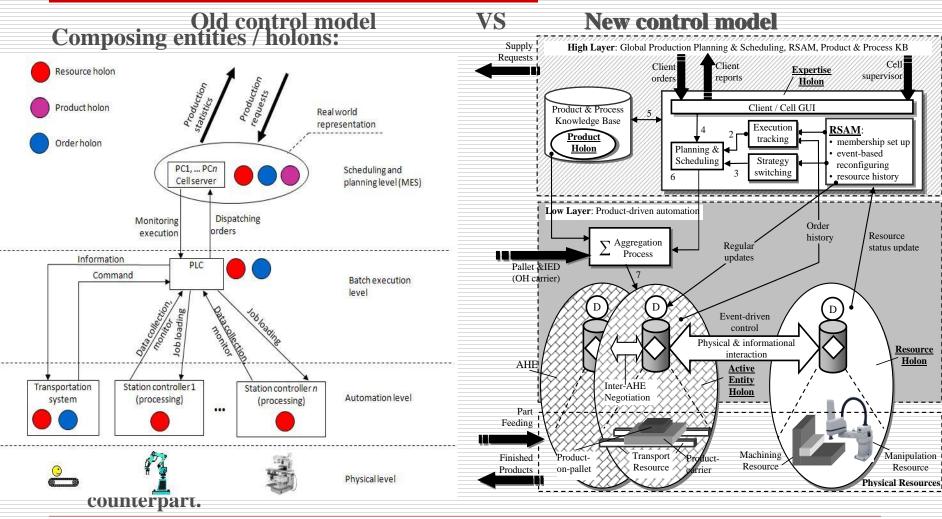
## Solution:

Semi-heterarchical control architecture inspired from the HMS






# Structure of the control model


**Shop-floor manufacturing structure:** 

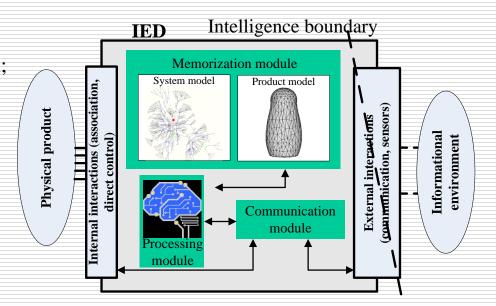
- 4-robot workstations (2 SCARA, 2 vertical articulated for assembly)
- 2 CNC milling machines serviced by vertical articulated robots
- 1 Cartesian robot workstation for pallet input / output
- 1 SCARA robot workstation with dual part feeding devices (vision-based AnyFeeders)
- Dual video cameras (stationary, down looking / mobile, arm mounted) for each machine vision system connected to robots in P0-P5





## **Structure of the control model**








## Structure of the control model

### **Active Holon Entity structure**

- Embedded intelligence, handles:
  - ✓ the updated model of resource services access (RSAM);
  - $\checkmark$  the product model;
  - ✓ a set of resource allocation algorithms (real-time scheduling);
  - $\checkmark$  an inter-agent communication protocol;
  - ✓ product-driven automation:
    - "Next-operation" scheduling;
  - "Packet optimization" scheduling lifecycle





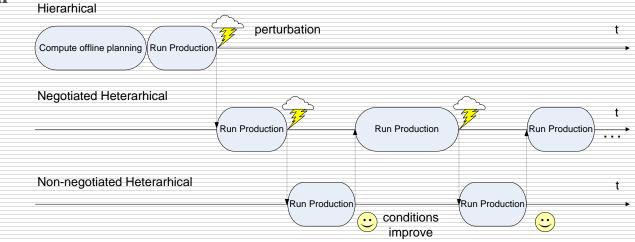


# **Dynamics of the control model**

#### Switching between the different production strategies

#### 1. Hierarhical

• Offline planning and allocation

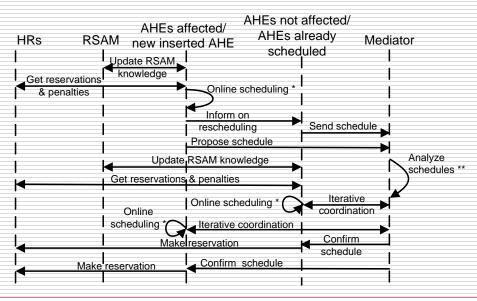

#### 2. Negotiated Heterarhical

- No planning
- Packet level online allocation

#### 3. Non-negotiated Heterarhical

- No planning
- Next job level allocation

#### => Semi-heterarchical strategy



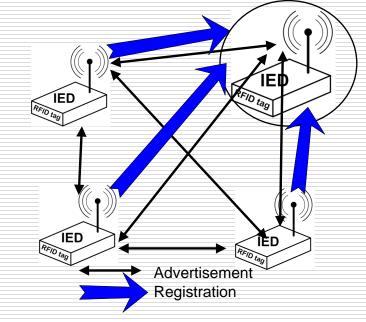





## **Dynamics of the control model: allocation process**

- Process objective:
  - Makespan minimization and equal resource utilization
  - Adaptability to perturbations
- Used strategies: hierarchical, negotiated heterarchical, non-negotiated heterarchical
- Real-time decentralized resource allocation

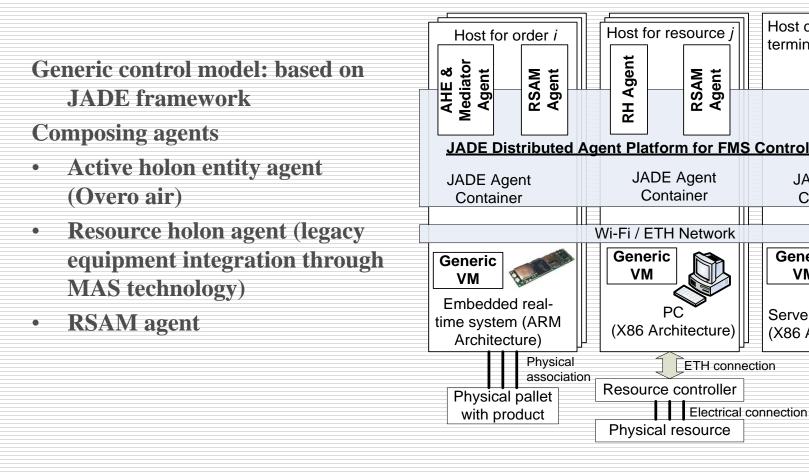







## **Dynamics of the control model: Mediator**

- Mediator definition
  - Agent in charge with conflict resolution
- Selection process and lifecycle
  - Elected dynamically, after the current one leaves the system
  - Implemented as a functionality of the AHE agent


Chosen mediator







# **Implementation of the generic control model**







Host configuration

**RSAM Agent** 

**JADE Main** 

Container

(X86 Architecture)

Generic

VM

Server

(initial

configuration)

terminal

## Implementation of the generic control model



| Worst recovery time in case of perturbation [time units] |                                                              |
|----------------------------------------------------------|--------------------------------------------------------------|
| Resource <i>i</i> failure: R <i>iF</i>                   | Restoring Local Storage <i>i</i> (LS <i>i</i> ) at depletion |
| 6.4 (R1F)                                                | 97 (LS1)                                                     |
| 6.5 (R2F)                                                | 112 (LS2)                                                    |
| 6.8 (R3F)                                                | 136 (LS3)                                                    |
| 6.5 (R4F)                                                | 83 (LS4)                                                     |





## Conclusions

## Paper goals:

- ✓ Definition of a generic service oriented control architecture
- ✓ Proposition of a method for decentralized resource scheduling using a mediator agent
- ✓ Proposition of an implementation framework which includes intelligent products and agentified resources

## Advantage of the proposed approach:

- ✓ Scalable
- ✓ Reactive
- ✓ Easy resource (re) configuration

## **Current work and perspectives:**

- ✓ Comparison with the previous control architecture
- ✓ Adding an ERP on top of the high control level



